Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа \mathbb{N}^{1} » Кемского муниципального района (МБОУ СОШ \mathbb{N}^{1})

Принята на заседании методического совета протокол № /от « « » (а/су/ст 2024г.

Утверждаю: Директор школы Е.Е. Куроптева

Tipukas N

МБОУ СОШ г<u>06 Сентягря</u>2024г.

Дополнительная общеобразовательная общеразвивающая программа технической направленности

«Робототехника» Возраст 15-17 лет срок реализации 1 год

Автор-составитель: Знаменская Ольга Федоровна, педагог дополнительного образования

Содержание

1.	Комплекс основных характеристик программы	3
	1.1. Пояснительная записка	3
	1.2. Цель и задачи программы	5
	1.3. Планируемые результаты	6
2.	Комплекс организационно-педагогических условий	7
	2.1. Тематическое планирование по годам обучения	7
	2.2. Содержание программы	9
	2.3. Формы аттестации	11
	2.4. Оценочные материалы	12
	2.5. Условия реализации программы	12
	2.6. Методические материалы	13
При.	ложение	17

1. Комплекс основных характеристик программы 1.1. Пояснительная записка

Дополнительная общеобразовательная общеразвивающая программа «Робототехника» (далее – Программа) относится к программам технологической направленности и разработана для обучающихся 16-17 лет соответствует требованиям $\Phi \Gamma OC$, предназначена для обучающихся уровня основного общего образования муниципального бюджетного общеобразовательного учреждения «Средняя общеобразовательная школа \mathbb{N} 1» Кемского муниципального района (далее – МБОУ СОШ \mathbb{N} 1).

Программа разработана в соответствии со следующими нормативными документами:

- 1. Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации» (ст. 2, ст. 15, ст.16, ст.17, ст.75, ст. 79);
- 2. Проект Концепции развития дополнительного образования детей до 2030 года;
- 3. Приказ Минпросвещения РФ от 09.11.2018 года № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- 4. Приказ от 30 сентября 2020 г. № 533 «О внесении изменений в порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам, утвержденный приказом Министерства просвещения Российской Федерации от 9 ноября 2018 г. № 196»;
- 5. Стратегия развития отрасли информационных технологий в Российской Федерации на 2014-2020 гг. и на перспективу до 2025 года;
- 6. СП 2.4.3648-20 Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи.

Актуальность Программы: необходимость вести работу в естественнонаучном и техническом направлениях для создания базы, позволяющей повысить интерес к дисциплинам среднего звена (физике, биологии, технологии, информатике, геометрии); востребованность развития широкого кругозора школьника и формирования основ инженерного мышления; отсутствие предмета в школьных программах начального образования, обеспечивающего формирование у обучающихся конструкторских навыков и опыта программирования.

Преподавание курса предполагает использование компьютеров и специальных интерфейсных блоков совместно с конструкторами. Важно отметить, что компьютер используется как средство управления моделью; его использование направлено на составление управляющих алгоритмов для собранных моделей. Учащиеся получают представление об особенностях составления программ управления, автоматизации механизмов, моделировании работы систем.

Новизна программы

Робот-конструктор LEGO позволяет учащимся: совместно обучаться в рамках одной группы; распределять обязанности в своей группе; проявлять повышенное внимание культуре и этике общения; проявлять творческий подход к решению поставленной задачи; создавать модели реальных объектов и процессов; видеть реальный результат своей работы.

Работа с образовательными конструкторами LEGO WeDo и LEGO EV3 позволяет школьникам в форме познавательной игры узнать многие важные идеи и развить необходимые в дальнейшей жизни навыки. При построении модели затрагивается множество проблем из разных областей знания – от теории механики до психологии, – что является вполне естественным.

Педагогическая целесообразность программы объясняется формированием высокого интеллекта через мастерство. Целый ряд специальных заданий на наблюдение, сравнение, домысливание, фантазирование служат для достижения этого. Программа направлена на то, чтобы через труд приобщить детей к творчеству.

Важно отметить, что компьютер используется как средство управления моделью; его использование направлено на составление управляющих алгоритмов для собранных моделей. Учащиеся получают представление об особенностях составления программ управления, автоматизации механизмов, моделировании работы систем.

В процессе конструирования и программирования учащиеся получат дополнительное образование в области физики, механики, электроники и информатики. Использование LEGO-конструкторов во внеурочной деятельности повышает мотивацию учащихся к обучению, при этом требуются знания практически из всех учебных дисциплин от искусств и истории до математики и естественных наук. Межпредметные занятия опираются на естественный интерес к разработке и постройке различных механизмов. Одновременно занятия LEGO как нельзя лучше подходят для изучения основ алгоритмизации и программирования. Работа с образовательными конструкторами LEGO позволяет школьникам в форме познавательной игры/проблемной ситуации узнать многие важные идеи и развить необходимые в дальнейшей жизни навыки. При построении модели затрагивается множество проблем из разных областей знания — от теории механики до психологии, — что является вполне естественным. Очень важным представляется тренировка работы в коллективе и развитие самостоятельного технического творчества. Изучая простые механизмы, учащиеся учатся работать руками (развитие мелких и точных движений), развивают элементарное конструкторское мышление, фантазию, изучают принципы работы многих механизмов.

Особенности организации образовательного процесса

Обучение по данной образовательной программе предполагает сформированность групп из учащихся одного возраста. Используется групповая форма обучения, количественный состав группы диктуется СанПиН (один ученик за компьютером) и возможностью материальной базы (количество компьютеров и наборов для конструирования в учебном кабинете). В течение года возможен дополнительный прием в группы (при наличии вакантных мест) по предварительному собеседованию. Во время регламентированных перерывов с целью снижения нервно-эмоционального напряжения, утомления зрительного анализатора, устранения влияния гиподинамии и гипокинезии, предотвращении развития позотонического утомления, выполняются комплексы упражнений для глаз, физкультурные паузы.

Принцип построения программы

На занятиях создана структура деятельности, создающая условия для творческого развития школьников на различных возрастных этапах и предусматривающая их дифференциацию по степени одаренности.

Основные дидактические принципы программы:

- доступность и наглядность;
- последовательность и систематичность обучения и воспитания;
- учет возрастных и индивидуальных особенностей детей.

Обучаясь по программе, дети проходят путь от простого к сложному, с учетом возврата к пройденному материалу на новом, более сложном творческом уровне.

Отличительные особенности данной программы от уже существующих в этой области заключается в том, что программа ориентирована на применение широкого комплекса различного дополнительного материала о простейших физических законах, лежащих в основе современной физической картины мира, наиболее важных открытиях в области физики.

Программой предусмотрено, чтобы каждое занятие было направлено на овладение основами механики, на приобщение детей к активной познавательной и творческой работе. Процесс обучения строится на единстве активных и увлекательных методов и приемов учебной работы, при которой в процессе усвоения знаний, законов правил у школьников развиваются творческие начала.

Образовательный процесс имеет ряд преимуществ:

- занятия в свободное время;
- обучение организовано на добровольных началах всех сторон (дети, родители, педагоги);
- детям предоставляется возможность удовлетворения своих интересов и сочетания различных направлений и форм занятия.

Адресат программы

Данная программа предназначена для учащихся 10-11 классов.

Количество обучающихся в группе 15 человек.

Набор в группы – свободный.

Состав группы-постоянный.

Подросток уже способен управлять собственным поведением, может дать достаточно аргументированную оценку поведения других, особенно взрослых. У них углубляется интерес к окружающему, дифференцируются интересы, появляется потребность определиться в выборе профессии. В своих коллективных делах подростки способны к большой активности. Они готовы к сложной деятельности, включающей в себя и малоинтересную подготовительную работу, упорное преодоление препятствия. Дети этого возраста склонны признавать только настоящий, по праву завоеванный авторитет. Они зорки и наблюдательны, чутко улавливают противоречия во взглядах и позициях старших, болезненно относятся к расхождениям между их словами и делами. Они все более настойчиво начинают требовать от старших, уважения к себе, к своим мнениям и взглядам, и особенно ценят серьезный, искренний тон взаимоотношений.

Сроки реализации программы: программа составлена с учетом санитарно-гигиенических требований, возрастных особенностей, учащихся школьного возраста (16-17 лет), представляет собой систему интеллектуально-развивающих занятий для учащихся старшей школы и рассчитана на 2 года обучения.

Объём программы

Программа рассчитана на 2 года обучения. Общее количество часов в год – 34 часов.

Программа является вариативной. При необходимости в соответствии с материальнотехническими и погодными условиями, планами учреждения, в течение учебного года, в пределах учебной нагрузки, возможна перестановка тем тематического плана программы.

Форма обучения – очная.

Режим занятий

Периодичность и продолжительность занятий: 1 раз в неделю по 1 учебному часу (40-45 минут занятие, перерыв между занятиями 10-15 минут).

Курс «Робототехника» относится к общеинтеллектуальному направлению развития личности, где дети комплексно используют свои знания.

Практическая работа с конструктором позволяет обучающимся:

- совместно обучаться в рамках одной группы;
- распределять обязанности в своей группе;
- проявлять повышенное внимание культуре и этике общения;
- проявлять творческий подход к решению поставленной задачи;
- создавать модели реальных объектов и процессов;
- решать задачи практического содержания;
- моделировать и исследовать процессы;
- переходить от обучения к учению.

1.2. Цель и задачи программы

Цель программы — развитие научно-технического и творческого потенциала личности ребёнка путём организации его внеурочной деятельности в процессе интеграции начального инженерно-технического конструирования и основ робототехники.

Задачи программы:

Образовательные (предметные): формирование умений и навыков конструирования, приобретение первого опыта при решении конструкторских задач по механике, знакомство и освоение программирования в компьютерной среде моделирования LEGO Mindstorms EV3 и NXT 2.0, развитие познавательного интереса к робототехнике и предметам естественнонаучного цикла — физика, технология, информатика; сформировать умение самостоятельно решать технические задачи в процессе конструирования моделей (выбор материала, планирование предстоящих действий, самоконтроль, умение применять полученные знания, приемы и опыт в конструировании других объектов и т.д.).

Личностные: развитие творческой активности, самостоятельности принятии оптимальных решений в различных ситуациях, развитие внимания, оперативной памяти, воображения, мышления (логического, комбинаторного, творческого), ответственности; эстетическое, нравственное и трудовое воспитание; формирование умения работать в группе; расширение области знаний о профессиях; развивать умения излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений; формирование способностей, обучающихся к саморазвитию, самообразованию и самоконтролю на основе мотивации к робототехнической и учебной деятельности; формирование современного мировоззрения, соответствующего современному развитию общества и науки.

Метапредметные: повышение мотивации учащихся к изобретательству и созданию роботизированных систем, формирование у учащихся стремления к получению качественного законченного результата, коммуникативных способностей; умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и деятельности, развивать мотивы своей познавательной И интересы познавательной деятельности; формирование коммуникативной И ИКТ-компетентности для успешной социализации, и самореализации в обществе; умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач; умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией; умение оценивать правильность выполнения учебной задачи, собственные возможности её решения.

1.3. Планируемые результаты

Предметные результаты:

- формирование устойчивого интереса к робототехнике и учебным предметам естественно научного цикла и технологии;
- формирование умения работать по предложенным инструкциям;
- формирование умения творчески подходить к решению задачи;
- формирование умения довести решение задачи до работающей модели;
- формирование умения излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;
- подготовка к состязаниям по Лего-конструированию.

Личностные результаты:

- готовность и способность обучающихся к саморазвитию;
- мотивация деятельности;
- самооценка на основе критериев успешности этой деятельности;
- навыки сотрудничества в разных ситуациях, умение не создавать конфликты и находитьвыходы из спорных ситуаций;
- этические чувства, прежде всего доброжелательность и эмоциональнонравственнаяотзывчивость.

Метапредметные результаты:

Регулятивные универсальные учебные действия:

- освоение способов решения проблем творческого характера в жизненных ситуациях;
- формирование умений ставить цель
- создание творческой работы, планировать достижение этой цели, создавать наглядныединамические графические объекты в процессе работы;
- оценивание получающегося творческого продукта и соотнесение его с изначальным замыслом, выполнение по необходимости коррекции либо продукта, либо замысла.

Познавательные универсальные учебные действия:

• строить рассуждение от общих закономерностей к частным явлениям и от частных явлений к общим закономерностям, строить рассуждение на основе сравнения предметов и явлений, выделяя при этом общие признаки.

Коммуникативные универсальные учебные действия:

- формирование и развитие компетентности в области использования информационно-коммуникационных технологий;
- подготовка графических материалов для эффективного выступления.
 - 2. Комплекс организационно-педагогических условий
 - 2.1. Тематическое планирование по годам обучения

Распределение учебного материала по разделам 1-й год обучения (10 класс)

№	Тема раздела	Кол-во часов
1.	Введение	1
2.	Знакомство с конструктором Lego	2
3.	Знакомство с программным обеспечением и оборудованием	4
4.	Конструирование заданных моделей WeDo	7
5.	Конструирование заданных моделей EV3	7
6.	Индивидуальная проектная деятельность	13
	Итого:	34

Распределение учебного материала по разделам 2-й год обучения (11 класс)

Nº	Тема раздела	Кол-во часов
1.	Введение	1
2.	Технология программирования робототехнической системы	20
3.	Решение учебных инженерных задач	12
4.	Повторение изученного материала	1
	Итого:	34

Поурочное планирование 10 класс

		Количество часов			
№	Название раздела/ темы занятия		Теоретические занятия	Практические занятия	
1. Введение					
1	Техника безопасности при работе с компьютером. Правила работы с конструктором	1	1		
2. Знакомство с конструктором Lego					
2-3	Lego Education Wedo и Lego Mindstorms EV3	2	2		

3. Знакомство с программным обеспечением и оборудованием					
4-5	Визуальная среда программирования	2	2		
6-7	Программный интерфейс (микрокомпьютер). Моторы. Датчики	2	2		
	4. Конструирование заданн	ных мод	елей WeDo		
8	Майло – научный вездеход	1		1	
9	Тяга, ходьба, толчок	1		1	
10	Скорость и езда	1		1	
11-12	Прочные конструкции, рычаг	2		2	
13	Перемещение материалов, подъем	1		1	
14	Движение, вращение, поворот, рулевой механизм	1		1	
	5. Конструирование задан	ных мод	целей EV3		
15	Робот Учитель	1		1	
16	Цветосортировщик	1		1	
14	Гиробой или Робот-рука	1		1	
18	Фантастические существа	1		1	
19-21	Своя модель	3		3	
	6. Индивидуальная проект	гная дея	тельность		
22-26	Создание собственных моделей в группах	5		5	
27-30	Соревнование на скорость по строительству пройденных моделей	4		4	
31-33	Работа с программой LEGO Digital Designer	3		3	
34	Повторение изученного материала	1	1		
	Bcero	34	8	26	

Поурочное планирование 11 класс

	Поурочное изганиро	Количество часов		
№	Название раздела/ темы занятия	Всего	Теоретические занятия	Практические занятия
	1. Введе	ние		
1	Техника безопасности при работе с компьютером. Правила работы с конструктором	1	1	
	2. Технология программирования	робототехнич	еской системы	
2	Визуальное программирование в робототехнике	1	1	
3	Основные команды. Среда программирования, базовые команды управления робототехнической системой, базовые алгоритмические конструкции	1	1	
4	Простейшие регуляторы: релейный, пропорциональный	1		1
5	Среда и языки программирования робототехнического устройства.	1		1
6	Технология программирования робототехнического устройства или системы: разработка, тестирование, отладка, запуск	1		1

программы управления					
7-9 Программирование рабочих движений промышленных роботов	3		3		
10-11 Алгоритмы поиска оптимального маршрута	2		2		
12-16 Оптимизация траекторий движения роботов в пространстве	5		5		
Автоматическое и дистанционное управление исполнительными системами робототехнического устройства или системы	5		5		
3. Решение инжен	ерных задач				
22 Что такое инженерная задача. Состав инженерной задачи	1	1			
Физическая теория и решение задач. Значение задач в обучении и жизни. Классификация инженерных задач	1	1			
24 Общие методы решения инженерных задач	1	1			
25-26 Технология решения инженерных задач средствами робототехники	2		2		
27-33 Точное перемещение мобильного робота. Навигация и локализация мобильного робота	7		7		
4. Повторение изученного материала. Подведение итогов за год					
34 Повторение изученного материала	1	1			
Всего	34	7	27		

2.2. Содержание программы

1-ый год обучения (10 класс)

Задача данного курса — познакомить обучающихся с конструктором Lego Mindstorms EV3. Научить собирать базовые конструкции роботов, программировать их под определенные задачи, разобрать базовые решения наиболее распространенных задач-соревнований.

Курс рассчитан на делающих первые шаги в мир робототехники с помощью конструктора Lego Mindstorms EV3. Все примеры роботов в этом курсе сделаны с помощью конструктора Lego Mindstorms EV3, программирование роботов объясняется на примере среды разработки Lego Mindstorms EV3.

Раздел 1 – **Введение**

Вводный урок. Техника безопасности при работе с компьютером в кабинете робототехики. Правила работы при работе с конструктором. Правило работы с конструктором и электрическими приборами набора LEGO WeDo и Lego Mindstorms EV3. Робототехника в Космической отрасли, робототехника на службе МЧС. Демонстрация передовых технологических разработок, используемых в Российской Федерации.

Формы занятий: лекция, беседа, индивидуальная работа, презентация, видеоролик.

Раздел 2 – Знакомство с конструктором Lego

Знакомство с наборами Lego Education WeDo и с базовым набором Lego Mindstorms Education EV3.

Понятия основных составляющими частей среды конструктора, цвет, формы и размеры деталей.

Формы занятий: лекция, беседа, презентация.

Раздел 3 – Знакомство с программным обеспечением и оборудованием

Изучение учениками визуальной среды программирования Lego Mindstorms EV3 Home Edition, её интерфейса и блоков.

Изучение микрокомпьютера (модуль EV3) набора LEGO EV3, его интерфейса, встроенного в меню и возможностей программирования блоков.

Модуль EV3 служит центром управления и энергетической станцией робота.

Исследование моторов и датчиков набора LEGO EV3:

Большой мотор - позволяет запрограммировать точные и мощные действия робота.

Средний мотор – позволяет сохранять точность движений робота, компактный размер механизма отличается быстрой реакцией движений.

Ультразвуковой датчик - использует отраженные звуковые волны для измерения расстояния между датчиком и любыми объектами на своем пути.

Датчик цвета – помогает распознать семь различных цветов и определить яркость цвета.

Датчик касания – распознает три условия: прикосновение, щелчок, отпускание.

Аккумуляторная батарея – экономичный, экологически безвредные и удобный источник энергии для робота.

Формы занятий: лекция, беседа, индивидуальная работа, решение проблемы практическая работа.

Раздел 4 – Конструирование заданных моделей WeDo.

Модели WeDo

Научный вездеход Майло, он же представляет базовый набор LEGO Education WeDo 2.0, являясь его «лицом». У робота важная миссия: ему необходимо найти признаки жизни на планете и доставить образцы в лабораторию для изучения. В ходе работы над проектом дети изучат работу датчиков движения и наклона, принципы взаимодействия с другим роботом. Совместная работа – Майло двойняшки.

Также предлагается собрать такие модели, как гоночная машина, тягач, цветок, лягушка, мусоровоз и вертолет, роботов под названием Шлюз» и «Землетрясение».

Изучается - движение, тяга, толкание, ходьба, толчок, скорость и езда (изучаются факторы, которые могут увеличить скорость автомобиля, чтобы помочь в прогнозировании дальнейшего движения). Также изучаются прочные конструкции, рычаг (исследование характеристик здания, которые повышают его устойчивость к землетрясению, используя симулятор землетрясений, сконструированный из кубиков LEGO). Перемещение материалов, подъем, вращение, поворот, рулевой механизм (вилочный подъемник и снегоочиститель).

Раздел 5 – Конструирование заданных моделей EV3

Учащиеся построят и запрограммируют модель «*Простой робот*», которая поможет на практике изучить работу **модуля EV3**. Производится подключение больших моторов к модулю через специальный черный кабель набора.

Работа с моделью «*Робот с датчиком расстояния*» позволит узнать учащимся работу **ультразвукового датчика**, его максимальные и минимальные значения. Различные способы программирования датчика позволит исследовать работу двигателей и движение робота.

Изучение датчика цвета, проводится во время конструирования и программирования модели «*Робот с датчиком цвета*», учащиеся проводят исследование работы датчика и его особенности. При разных видах программирования робота, наблюдается изменение в движении двигателей.

Также учащиеся соберут такие модели как: цветосортировщик, гиробой, щенок, робот рука. **Формы занятий**: лекция, беседа, индивидуальная работа, решение проблемы.

Раздел 6 – Индивидуальная проектная деятельность

Создание собственных моделей в группах (например - часы со стрелками, гимнаст EV3, робот-художник EV3 Print3rbot, гоночная машина формула 1 EV3, мойщик пола, робот с клешней, селеноход, приводная платформа EV 3 на гусеничном ходу).

Соревнование на скорость по строительству пройденных моделей.

Работа с программой LEGO Digital Designer (виртуальный конструктор Лего).

LEGO Digital Designer 4 — программа для создания различных 3D-объектов на основе виртуальных деталей конструктора LEGO от самих разработчиков этого популярного конструктора, в этом Лего, как и в настоящем конструкторе, можно использовать огромное разнообразие существующих на данный момент LEGO-элементов.

Программа LEGO Digital Designer включает примерно 760 типов элементов. Выбранной детали можно присвоить любой цвет. Как и в обычных 3D-редакторах, рабочую область программы можно приближать и удалять, разворачивать под любым углом, свободно перемещаться по ней. Задний фон можно добавить или поменять в режиме просмотра готовой виртуальной модели LEGO. Интерфейс программы очень прост и удобен, поэтому даже самому маленькому ребенку будет несложно разобраться с Виртуальным конструктором Лего. Программа поддерживает два режима конструирования: вы можете начать все "с нуля" и воплотить свои даже немыслимые фантазии в созданных моделях или дополнить почти готовые модели, что рекомендуется начинающим пользователям.

Повторение изученного материала. Подведение итогов за год.

2-ой год обучения (11 класс)

Раздел 1 – Введение

Вводный урок. Правила поведение и техника безопасности в кабинете и при работе с конструктором. Знакомство с ресурсным набором Lego Mindstorms Education EV3. Правило работы с конструктором и электрическими приборами набора LEGO EV3. Робототехника в ІТ-сфере. Демонстрация передовых технологических разработок, используемых в Российской Федерации.

Формы занятий: лекция, беседа, индивидуальная работа, презентация, видеоролик.

Pаз ∂ ел 2 – **Технология программирования робототехнической системы**

робототехнике. Визуальное программирование В Основные Среда программирования, базовые команды управления робототехнической системой, базовые алгоритмические конструкции. Простейшие регуляторы: релейный, пропорциональный. Среда и языки программирования робототехнического устройства. Технология программирования робототехнического устройства или системы: разработка, тестирование, отладка, запуск программы управления. Программирование рабочих движений промышленных роботов. Алгоритмы поиска оптимального маршрута. Оптимизация траекторий движения роботов в пространстве. Автоматическое и дистанционное управление исполнительными системами робототехнического устройства или системы.

Формы занятий: лекция, беседа, индивидуальная работа, решение проблемы, практическая работа.

Раздел 3 – Решение инженерных задач

Что такое инженерная задача. Состав инженерной задачи. Физическая теория и решение задач. Значение задач в обучении и жизни. Классификация инженерных задач. Общие методы решения инженерных задач. Технология решения инженерных задач средствами робототехники. Точное перемещение мобильного робота. Навигация и локализация мобильного робота.

Формы занятий: лекция, беседа, индивидуальная работа, решение проблемы, практическая работа.

Раздел 4 – Повторение изученного материала. Подведение итогов за год. 2.3. Формы аттестации

Проверка полученных умений, навыков и знаний осуществляется на контрольных занятиях, а также в процессе участие обучающихся в соревнованиях разного уровня, профильных конференциях и семинарах, внутренних соревнованиях. Текущий контроль усвоения теоретического материала осуществляется с помощью опроса (зачета) по отдельным темам (разделам). Основным результатом обучения является творческая работа—создание и программирование робототехнического устройства собственной конструкции. Аттестация по итогам освоения программы проводится в форме итогового зачета по разделам программы и защиты творческого проекта (Приложение 1). Формой итогового контроля также может являться результативное участие обучающегося в конкурсных мероприятиях муниципального, городского и более высокого уровней.

Форма подведения итогов освоения программы внеурочной деятельности «Робототехника»

Система оценивания – безотметочная. Используется только словесная оценка достижений учащихся.

Форма подведения итогов реализации программы – игры, соревнования, конкурсы, выставки.

Контроль предполагает выявление уровня освоения учебного материала при изучении, как отдельных разделов, так и всей программы в целом.

2.4. Оценочные материалы

Для оценивания результатов текущей и промежуточной диагностики используется уровневая система: низкий, средний и высокий уровень. В начале учебного года проводиться собеседование, с целью выявления начальных умений и навыков, мотивации поступления в объединение. Во время всего периода обучения применяются тесты на развитие памяти, мышления, воображения. Оценочный лист заполняется педагогом в конце учебного года по результатам наблюдений, тестирования и выполнения практических заданий.

Оценочный лист по итогам обучения по дополнительной общеобразовательной общеразвивающей программе «Робототехника»

общеразвивающей программе «Робототехника»					
Критерии оценки	низкий уровень	средний уровень	высокий уровень		
Знают					
правила безопасной работы					
основные компоненты					
конструкторов LEGO					
конструктивные					
особенности различных					
моделей, сооружений и					
механизмов					
виды подвижных и					
неподвижных соединений в					
конструкторе					
	Уме	еют			
работать с литературой, с					
журналами, с каталогами, в					
интернете (изучать и					
обрабатывать информацию)					
самостоятельно решать					
технические задачи в					
процессе конструирования					
роботов (планирование					
предстоящих действий,					
самоконтроль, применять					
полученные знания)					
создавать модели при					
помощи специальных					
элементов по разработанной					
схеме, по собственному					
замыслу					

Критерии оценивания знаний, умений и навыков обучающихся

Параметры	Уровни освоения программы				
оценивания	высокий	средний	низкий		
		Обучающийся			
Практические навыки	Обучающийся самостоятельно	пытается	Обучающийся не		
работы с		самостоятельно	знает основ		
конструктором	собирает робота	собрать робота,	конструирования		
конструктором	coonpact pooota	прибегает к помощи	роботов		
		педагога			
	Обучающийся	Обучающийся знает			
	свободно	основные элементы	Обучающийся		
	ориентируется в	программного	испытывает		
	программном	обеспечения.	затруднения в		
Программирование	обеспечении. Хорошо	Удовлетворительно	нахождении		
типовых роботов с	владеет навыками	владеет навыками	требуемых команд. С		
помощью	составления	составления программ,	трудом демонстрирует		
«внутреннего» языка	программ.	но не укладывается в	навыки составления		
программирования	Последовательно	заданные временные	программ. Не		
	исчерпывающе	сроки. С ошибками	укладывается в		
	отвечает на	отвечает на	заданные временные		
	поставленные	поставленные	рамки.		
	вопросы.	вопросы.			

2.5. Условия реализации программы

Занятия по данной программе проводятся на базе МБОУ СОШ №1 в стационарном, типовом, освещенном и проветриваемом учебном кабинете, который отвечает требованиям санитарно-гигиенических норм, правилам техники безопасности, установленных для помещений, где работают учащиеся, оснащенном типовыми столами и стульями с учетом физиологических особенностей обучающихся.

<u>Материалы и инструменты</u>: конструкторы LEGO Education Mindstorms EV3, компьютеры, проектор, экран.

2.6. Методические материалы

Методы организации учебного процесса.

- <u>Информационно</u> рецептивный метод (предъявление педагогом информации и организация восприятия, осознания и запоминание обучающимися данной информации).
- <u>Репродуктивный метод</u> (составление и предъявление педагогом заданий на воспроизведение знаний и способов умственной и практической деятельности, руководство и контроль за выполнением; воспроизведение воспитанниками знаний и способов действий по образцам, произвольное и непроизвольное запоминание).
- <u>Метод проблемного изложения</u> (постановка педагогом проблемы и раскрытие доказательно пути его решения; восприятие и осознание обучающимися знаний, мысленное прогнозирование, запоминание).
- <u>Эвристический метод</u> (постановка педагогом проблемы, планирование и руководство деятельности учащихся; самостоятельное решение обучающимися части задания, непроизвольное запоминание и воспроизведение).
- <u>Исследовательский метод</u> (составление и предъявление педагогом проблемных задач и контроль за ходом решения; самостоятельное планирование обучающимися этапов, способ исследования, самоконтроль, непроизвольное запоминание).

В организации учебной познавательной деятельности педагог использует также словесные, наглядные и практические методы.

Словесные методы. Словесные методы педагог применяет тогда, когда главным источником усвоения знаний обучающимися является слово (без опоры на наглядные способы и практическую работу). К ним относятся: рассказ, беседа, объяснение и т.д.

Наглядные методы. К ним относится методы обучения с использованием наглядных пособий. *Практические методы*. Методы, связанные с процессом формирования и совершенствования умений и навыков обучающихся. Основным методом является практическое занятие.

Дидактические средства. В ходе реализации образовательной программы педагогом используются дидактические средства: учебные наглядные пособия, демонстрационные устройства, технические средства.

При обучении по программе используются следующие технологии: группового обучения, проектного обучения, здоровье сберегающие, технология дистанционного обучения.

Групповые технологии – обучение проходит в разновозрастных группах, объединяющих старших и младших общим делом.

Технология проектного обучения – ребята учатся создавать проекты по решению доступных им проблем, и умело защищать их перед другими. Поощряется смелость в поисках новых форм, проявление фантазии, воображения.

Технология дистанционного обучения – это способ обучения на расстоянии. Она позволяет решать задачи формирования информационно-коммуникационной культуры учащихся. Её особенность в том, что у детей есть возможность получать знания самостоятельно. Благодаря современным информационным технологиям, учащиеся и педагог могут использовать различные информационные ресурсы. Данные технологии применяются в случае болезни учащегося или для учащихся при консультировании по отдельным вопросам в соответствии с содержанием программы, а также при неблагоприятной социальной обстановке в образовательной организации, районе, стране по распоряжению вышестоящих органов управления образования. Педагог обеспечивает регулярную дистанционную связь с учащимися и родителями (законными представителями) для информирования о ходе реализации программы с использованием дистанционных образовательных технологий, электронного обучения, расписанием занятий, графиком проведения текущего контроля и итогового контроля. Для родителей (законных представителей) учащихся разрабатываются инструкции/памятки о реализации программы с применением электронного обучения и дистанционных образовательных технологий с указанием: адресов электронных ресурсов, с помощью которых организовано обучение; логин и пароль электронной образовательной платформы (при необходимости); режим и расписание дистанционных занятий; формы контроля освоения программы; средства оперативной связи с педагогом. Образовательная деятельность организовывается в соответствии с расписанием,

Занятие с применением дистанционных образовательных технологий и электронного обучения включают: разработанные педагогом презентации с текстовым комментарием; online-занятие, online-консультация; фрагменты и материалы доступных образовательных интернетресурсов; инструкции по выполнению практических заданий; дидактические материалы/ технологические карты; контрольные задания.

Структура занятия с применением дистанционных образовательных технологий и электронного обучения содержит основные компоненты, что и занятие в очной форме. При проведении занятия с использованием дистанционных образовательных технологий, электронного обучения, перед учащимися обозначаются правила работы и взаимодействия. В процессе занятия педагогу необходимо четко давать инструкции выполнения заданий.

Для проведения занятий используются следующие способы: проведение занятий в режиме онлайн; размещение презентаций и текстовых документов в сети Интернет; проведение практических занятий: видеозапись мастер-класса педагога, видеозапись выполненной работы учащимися.

On-line консультации проводятся педагогом с помощью электронной почты.

Здоровьесберегающие технологии. Важное значение в проведении занятий имеет организация динамических пауз. Введение этих упражнений в процесс занятия обеспечивает

своевременное снятие физической усталости и оживление работоспособности детей. Количество таких пауз (физкультминутки) в течение занятия зависит от возраста детей, от сложности изучаемого материала, от состояния работоспособности. Занятия строятся с учетом индивидуальных и возрастных особенностей, степени подготовленности, имеющихся знаний и навыков.

Учебное занятие — основной элемент образовательного процесса, который проходит в комбинированной форме в двух частях: теоретической и практической. Теоретическая часть проходит в виде лекций, где объясняется новый материал, практическая часть—закрепление пройденного материала посредством выполнения практических заданий по разделам и темам программы. На занятиях используется индивидуальный подход к каждому обучающемуся, особенно при выполнении итоговой практической работы. В процессе выполнения практических работ происходит обсуждение способов решения поставленной задачи, выбора инструментов.

Комбинированная форма занятий обеспечивает смену видов деятельности и перерыв в работе за компьютером.

Список литературы

Для педагогов

- 1. Добриборш Д.Э., Чепинский С.А., Артèмов К.А. Основы робототехники на Lego® Mindstorms® EV3. Учебное пособие. М.: Лань, 2019.-108 с. Иванов А. А. Основы робототехники. Учебное пособие. М: ИНФРА-М, 2019.-223 с.
- 2. Злаказов А.С. Уроки Лего-конструирования в школе: методическое пособие. М.: БИНОМ. Лаборатория знаний, 2019. 120с.
- 3. Корягин А.В. Образовательная робототехника LegoWedo. Сборник методических рекомендаций и практикумов. М.: «ДМК-Пресс», 2020. 254 с.
- 4. Книга учителя LEGO Education WeDo (электронное пособие)
- 5. Огановская Е.Ю., Князева И.В., Гайсина С.В. Робототехника, 3D-моделирование и прототипирование в дополнительном образовании. М.: Каро, 2017. 208 с.
- 6. Тарапата В.В., Самылкина Н.Н. Робототехника в школе. Методика, программы, проекты. М.: Лаборотория знаний, 2020.-109 с.
- 7. Филиппов С.А. Уроки робототехники. Конструкция. Движение. Управление. M.: Лаборатория знаний, 2021.-176 с.
- 8. Юревич Е.И. Основы робототехники. Учебное пособие. М.: BHV, 2020.-304 с. Интерет-ресурсы
 - http://www.lego.com/education/
 - http://learning.9151394.ru

Для учащихся

- 1. Белиовская Л., Белиовский Н. Использование Лего–роботов в инженерных проектах школьников. М.: «ДМК Пресс», 2016.-88 с.
- 2. Винницкий Ю.А. Игровая робототехника для юных программистов и конструкторов. М.: ВНV, 2019. 240 с. 3. Русин Г.С., Иркова Ю.А., Дубовик Е.В. Привет, робот! Моя первая книга по робототехнике. М.: Наука и Техника, 2018. 304 с.

Ресурсы сети Интернет

- 1. www.int-edu.ru
- 2. http://strf.ru/material.aspx?d_no=40548&CatalogId=221&print=1
- 3. http://masters.donntu.edu.ua/2010/iem/bulavka/library/translate.htm
- 4. http://www.nauka.vsei.ru/index.php?pag=04201008
- 5. http://edugalaxy.intel.ru/index.php?automodule=blog&blogid=7&showentry=1948
- 6. http://legomet.blogspot.com
- 7. http://www.memoid.ru/node/Istoriya detskogo konstruktora Lego
- 8. http://legomindstorms.ru/2011/01/09/creation-history/#more-5

- 9. http://www.school.edu.ru/int
- 10. http://robosport.ru
- 11. http://myrobot.ru/stepbystep/
- 12. http://www.robotis.com/xe/bioloid en
- 13. http://www.prorobot.ru/lego/dvijenie po spiraly.php
- 14. http://technic.lego.com/en-us/BuildingInstructions/9398%20Group.aspx13
- 15. http://www.nxtprograms.com/robot arm/steps.html
- 16. http://www.mos-cons.ru/mod/forum/discuss.php?d=472
- 17. http://www.isogawastudio.co.jp/legostudio/modelgallery_a.html

18.

 $\frac{http://sd2cx1.webring.org/l/rd?ring=robotics;id=2;url=http\%3A\%2F\%2Fwww\%2Eandyworld\%2Einfo\%2Flegolab\%2F$

- 19. http://www.int-edu.ru/object.php?m1=3&m2=284&id=1080
- 20. http://pacpac.ru/auxpage activity booklets/

Индивидуальный и групповой творческий проект

«Создание моделей с использованием базовых конструкций»

Цель: определение уровня способностей учащихся по итогам обучения по программе.

Условия проведения:

1. Время выполнения – 90 мин.

Оборудование: LEGO-конструктор.

Порядок выполнения:

- 1. Придумать индивидуально или группой LEGO-конструкцию.
- 2. Выбрать базовые элементы конструкции.
- 3. Соблюдая технологическую последовательность, собрать базовые элементы конструкции.
- 4. Проверить основные узлы соединения.
- 5. Проверить движение механизмов.
- 6. Запустить конструкцию в движение.

Выполнение практической работы «Конструкция из базовых элементов» по заданному чертежу

Цель: определение уровня способностей учащихся на начальном этапе обучения.

Условия проведения:

- 1. Время выполнения 45 мин.
- 2. Самостоятельное выполнение практической работы.

Оборудование: дидактический материал «Конструкция из базовых элементов», LEGO-конструктор.

Порядок выполнения:

- 1. По заданному чертежу, соблюдая технологическую последовательность, собрать базовую конструкцию.
- 2. Проверить основные узлы соединения.
- 3. Проверить всю конструкцию в целом.